160 Metre AM/SSB Receiver
I've slowly been acquiring some of the hard-to-find parts needed for this project for a couple of months.  I believe I have enough to make a start. The circuit is based on one published in "Solid State Design for the Radio Amateur" beginning on page 132 and originally published in QST.  My receiver will have SSB & AM I.F. filters rather than SSB & CW as per the original project.  I 'll also be using Murata ceramic filters in place of the original Collins mechanical filters. An AM detector circuit will need to be included. As this is just a single band receiver I expect It will be a more physically compact build than my Progressive Receiver which is described on another page.

Some CA3028A integrated circuits and some miniature 455KHz I.F. transformers have been sourced. The JW Miller I.F. transformers specified are no longer available. The VFO PCB has been built and tested and a National Velvet Vernier dial was found in the junk box. It is similar in appearance to the one used in the original article.

All PCB artworks have been completed for all of the circuit boards required for this receiver including the fixed tuned preselector, tunable preselector, RF amplifier/mixer, AGC amplifier, I.F. amplifier/product detector, I.F. ceramic filter switching, BFO and audio amplifier circuits.
Tuesday, 12th June 2018
A Homebrew 160 Metre AM & SSB Superheterodyne Receiver

2672 Page Visits
Page last updated on May 15th, 2020
IF Amplifier Component Overlay
CA3028A IF Amplifier Circuit
Assembled I.F. Amplifier
AGC Amplifier Circuit
AGC Amplifier Component Overlay
Assembled AGC Amplifier
IF Filter Switching Circuit
Ceramic IF Filter Switching
Assembled Filter Switching PCB
Assembled VFO
RF Amplifer & Mixer
RF Amplifier and Mixer
RF Amplifier and Mixer
Fix Tuned Preselector
Tunable Preselector
Download a copy of the original article
I have finished building and testing the AGC amplifier, SSB/AM ceramic filter switching, and the 455 KHz I.F. amplifier circuit boards and initial tests indicate that they are working for the most part as per the original design. However, I found that the post filter amplifier stage, a 2N2222A was oscillating at about 300KHz so I had to introduce some negative feedback between the collector and base to tame it. I used a 10N cap and 10K resistor in series and it's now very stable.
Monday 12th November 2018
Sunday 2nd December 2018
I built the VFO and put it in a diecast box for further testing. It did not end up as I had first imagined. The Toko style coil in a can was totally unusable. It made a very unreliable and drifty oscillator so I resorted to modifying the PCB layout to incorporate a toroid style coil as displayed in the photo below. This version is much more stable but I'm not yet convinced I have it as stable as it needs to be.
I let the VFO run overnight and recorded 32Hz of drift in 7 hours but of course I don't know what it did in between those times. At least I know that it does not drift in one direction continually.
Sunday 17th February 2019
After a couple of months break from this project I have now assembled the RF front end PCB today (excluding the two bandpass filters). Once powered up for testing, it tuned up and worked as it should first time which was very pleasing. I had to rewind the inductor I used for L14 to get the required amount of inductance.  I bought the 455kHz I.F. transformer from a local shop, Jaycar Electronics. I also managed to find the original JW Miller inductor part recommended for the L15 position.
Friday 15th May 2020

Below is the completed 455 KHz BFO enclosed in a case made from double sided copper clad board. I managed to source the original JW Miller coil specified in the design. The oscillator is quite stable for a free running oscillator. The unit below has less than 20Hz of drift in a 12 hour period. I may still employ a crystal locked oscillator for this as I have suitable crystals.